Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics.
نویسندگان
چکیده
The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.
منابع مشابه
Distinct subtypes of basolateral amygdala taste neurons reflect palatability and reward.
The amygdala processes multiple, dissociable properties of sensory stimuli. Given its central location within a dense network of reciprocally connected regions, it is reasonable to expect that basolateral amygdala (BLA) neurons should produce a rich repertoire of dynamical responses to taste stimuli. Here, we examined single BLA neuron taste responses in awake rats and report the existence of t...
متن کاملNeural dynamics in response to binary taste mixtures 1 2 3 Joost
19 20 Taste stimuli encountered in the natural environment are usually combinations of multiple 21 tastants. Although a great deal is known about how neurons in the taste system respond to 22 single taste stimuli in isolation, less is known about how the brain deals with such mixture 23 stimuli. Here, we probe the responses of single neurons in primary gustatory cortex (GC) of 24 awake rats to ...
متن کاملNeural dynamics in response to binary taste mixtures.
Taste stimuli encountered in the natural environment are usually combinations of multiple tastants. Although a great deal is known about how neurons in the taste system respond to single taste stimuli in isolation, less is known about how the brain deals with such mixture stimuli. Here, we probe the responses of single neurons in primary gustatory cortex (GC) of awake rats to an array of taste ...
متن کاملState-dependent modulation of time-varying gustatory responses.
Sensory processing is modulated by attention, which is a function of network states. Here we show that changes in such states do more than a simple gating of stimuli: they actually re-arrange cortical coding space to emphasize emotional valences. We delivered taste stimuli to rats before and after a spontaneous state change ("disengagement") that is associated with a reduction in attention and ...
متن کاملSodium concentration coding gives way to evaluative coding in cortex and amygdala.
Typically, stimulus batteries used to characterize sensory neural coding span physical parameter spaces (e.g., concentration: from low to high). For awake animals, however, psychological variables (e.g., pleasantness/palatability) with complicated relationships to the physical often dominate neural responses. Here we pit physical and psychological axes against one another, presenting awake rats...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 22 شماره
صفحات -
تاریخ انتشار 2013